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We prove a Bernstein type inequality for multivariate quasipolynomials and
apply it to carry out the following results. (1) The evaluation of the uniform norm
for a quasipolynomial on a convex body V/Rn by that on a measurable subset of V.
(2) The estimate of the BMO-norm for a quasipolynomial in terms of its degree and
exponential type. (3) The reverse Ho� lder inequality with a dimensionless constant.
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1. INTRODUCTION

1.1. The classical Bernstein inequality states that for a holomorphic
polynomial p # C[z1 , ..., zn] of degree s

max
Bc (0, R)

| p(z)|�Rs max
Bc (0, 1)

| p(z)| (R>1).

In the following Bc(z, t)(/Cn) stands for the complex Euclidean ball of
radius t centered at z=(z1 , ..., zn).

The goal of this paper is to prove a similar inequality for a quasipoly-
nomial and to obtain some new inequalities that result from it. For this we
first recall several basic definitions.

Definition 1.1. Let f1 , ..., fk # (Cn)* be a pairwise different set of com-
plex linear functionals. A quasipolynomial with spectrum sp(q) :=[ f1 , ..., fk]
is a finite sum

q= :
k

i=1

pie fi, (1.1)

where pi # C[z1 , ..., zn] are holomorphic polynomials. The expression

m(q) := :
k

i=1

(1+deg p j)

is said to be the degree of q.

doi:10.1006�jath.2001.3576, available online at http:��www.idealibrary.com on

28
0021-9045�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 Research supported in part by NSERC.



We also introduce the exponential type of q by

=(q) := max
1� j�k

max
Bc(0, 1)

| fj |.

We now formulate the first basic result, an analog of Bernstein's inequality
for quasipolynomials.

Theorem 1.2. For any quasipolynomial of degree m the inequality

max
Bc (z, R)

|q|�C(max[1, =(q)])m&1 Rm&1e=(q) R max
Bc (z, 1)

|q| (R>1) (1.2)

holds with a constant C=C(k, m), that is, depending only on the parameters
in the parenthesis.

From the proof of this result it follows the next estimate of the constant:

C�m(2k)m e2k&1 `
k

i=1

(mi)!<(km)m e2k.

Here mi :=deg pi+1.
The following two examples show that the exponents m&1 and =(q) R

in (1.2) are sharp.

(1) Let q*(z) :=(sin *z)m be a univariate quasipolynomial with *>0
and an integer m>0. Clearly the degree of q is m+1 and =(q*)=*m while
for a suitable constant c=c(m)>0 and a sufficiently small * and R=1�- *
we have

max
Bc (0, R)

|q* |�cRme*mR max
Bc (0, 1)

|q* |.

(2) Let h*(z) :=(sin *z)2& *z
2 sin 2*z, *>0, be a quasipolynomial of

degree m=5 (here k=3) with =(h)=2*. Then there is a constant c$>0
such that for a sufficiently small * and R=1�- * we have

max
Bc (0, R)

|h* |�c$R4 e2*R max
Bc (0, 1)

|h* |.

This example also shows that one can not replace m&1 in inequality (1.2)
by k+d&1, where d :=max1� j�k deg pj . In fact, in this case k+d&1=3.
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Remark 1.3. It is not difficult to prove that for a quasipolynomial
q=�k

i=1 pi e fi with d :=max1� j�k deg pj the inequality

max
Bc (0, R)

|q|�C(q) Rde=(q) R max
Bc (0, 1)

|q| (R>1)

holds. However, supqC(q)=� as the above mentioned examples show.

Remark 1.4. One possible application of Bernstein type inequalities is
in estimating the number of zeros of univariate quasipolynomials in disks
of different radii. This, in turn, leads to important results in the theory of
transcendental numbers see, e.g. [Po], [P], [PS] and references there in.

1.2. Using the inequality of Theorem 1.2 we prove

Theorem 1.5. Let q be a quasipolynomial of degree m. Then there are
absolute constants c1<15e3, c2<4e+1 and c3<4e+1 such that for any
ball Bc(z, r)/Cn, a real interval I/Bc(z, r), and any measurable subset
|/I the inequality

sup
I

|q|�\c1 |I |
||| +

l

sup
|

|q|

holds with l=log C+(m&1) log(c2 max[1, =(q)])+c3=(q) r. Here C is the
constant of Theorem 1.2.

Remark 1.6. The best constant l for which the inequality of Theorem 1.5
is valid with c1=4 is called according to [Br1, Def. 1.5] the Chebyshev
degree of q in Bc(z, r). Theorem 1.5 establishes an estimate of the
Chebyshev degree.

We use this result to prove an inequality comparing the uniform norm
of a quasipolynomial on a convex body V by its uniform norm on a
measurable subset |/V. The sharp inequalities of this type for univariate
polynomials were proved by Remez [R] in the 1930's and for the multi-
variate case by Brudnyi and Ganzburg [BG] in the 1970's (see also [E],
[G], [Na] for various generalizations of Remez's inequalities and applica-
tions in Analysis). Below, B(x, t)/Rn(/Cn) denotes a real Euclidean ball
of radius t centered at x, and ||| is the Lebesgue measure of |/Rn.

Theorem 1.7. Let V/Rn be a convex body. Then for any quasi-
polynomial q defined on Cn and a measurable |/V the inequality

max
V

|q|�\c1n |V|
||| +

:

max
|

|q|
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holds with :=log C+(m&1) log(c2 max[1, =(q)])+(c3 �2) =(q) diam(V)
and c1 , c2 , c3 , C as in Theorem 1.5.

The following consequence of this theorem may be useful in considering
compactness results for quasipolynomials.

Corollary 1.8. Assume that qs , s=1, 2, ... is a sequence of quasi-
polynomials of degree �m such that lims � � =(qs)=�. Then

lim sup
s � �

1
=(qs) |V| |V

log
&qs&V

|qs(x)|
dx�(c3 �2) log(c1ne) diam(V).

Here &q&V :=maxV |q|.

The next results were first established in [Br2] for analytic functions in
terms of the Chebyshev degree. Theorem 1.5 allows us in the case of
quasipolynomials to replace these estimates by more constructive ones. In
order to formulate the corresponding theorems let us recall that a function
h : Rs � R+ is log-concave if its support K=[x # Rs : h(x)>0] is convex
and log h is a concave function on the support. Let +h be a measure on Rs

with density h. For a convex body V/Rs we set

|V| :=+h(V), fV :=exp \ 1
|V| |V

log | f | d+h + .

We assume without loss of generality that

+h(V)=1.

Theorem 1.9. Let As/Cn($R2n) be an affine subspace of real dimen-
sion s, V/As be an s-dimensional convex body, and h : As � R+ be a
log-concave function supported on V. There are absolute (i.e. independent of
dimensions s, n) constants c, C>0 such that for any quasipolynomial q
defined on Cn

(1) +h[x # V : |q(x)|>tqV]�C exp(&ct1�:)

and (1.3)

(2) +h[x # V : |q(x)|�tqV]�C(ct)1�: (log t)1�2, t�e&1.

Here : is the constant of Theorem 1.7.
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Corollary 1.10. Under the assumptions of Theorem 1.9

1
|V| |V

|q| p d+h�(cp:) p:(qV) p�(cp:) p: \ 1
|V| |V

|q| d+h +
p

( p>1)

with an absolute constant c>0.

In particular, if qV�1, then the Orlicz norm of q defined by the Orlicz
function ,(x) :=exp(x�:)&1, x # R+ , on (V, d+h) is bounded by an
absolute constant.

Corollary 1.11. Under the assumptions of Theorem 1.9

1
|V| |V

|log |q|&CV (q)| d+h�C:.

Here C>0 is an absolute constant and CV (q) := 1
|V| �V log |q| d+h . In par-

ticular, the BMO-norm of q|V is bounded by C:.

Remark 1.12. One can improve the estimate of the constant C estab-
lished in Theorem 1.2. This leads to a sharper estimate of the constant : in
all subsequent results. For example, in [P, Corol. 1] it was proved that the
number of zeros of a univariate quasipolynomial q of degree at most m in
Bc(z, R)/C does not exceed 4(m&1)+3R=(q). Using this estimate and an
estimate of the Chebyshev degree of an analytic function by its local
valency given in [Br1, Prop. 1.7] we obtain that :�c(4m+(3�2) =(q)
diam(V)). Here c>0 is an absolute constant that can be calculated
explicitly.

2. PROOF OF THEOREM 1.2

We first prove the theorem under the assumption =(q)�1. Observe that
there is a map A( y) := g( y)+v, y # Cn, where g is a unitary transform of
Cn and v # Cn sending Bc(0, t) to Bc(z, t). So if we prove the theorem for
the quasipolynomial q1( y) :=q(A( y)) (which satisfies deq q1=deq q and
=(q1)==(q)) then going back to q we obtain the required inequality. Thus
it suffices to prove the theorem for balls centered at 0.

Let l be a ray with the origin at 0 such that maxBc (0, R) |q|=
maxl & Bc (0, R) |q|. Arguing as above we may assume without loss of
generality that l is a subset of the real axis x1 . Hence the required result
follows from a similar one for univariate quasipolynomials:
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Let q(z)=�k
i=1 pi (z) eaiz, ai # C, pi # C[z], 1�i�k, be a univariate

quasipolynomial of degree �m and =(q) :=max1�i�k |ai |�1. Denote by
D/C the unit disk. Our goal is to prove that

max
0�x�R

|q(x)|�CRm&1e=(q) R max
z # D

|q(z)| (R>1)

with C=C(m, k, m1 , ..., mk) and mi=deg p i+1. (Here we think of q as the
restriction of the original quasipolynomial to the straight line containing l.)

Denote as=xs+iys and assume without loss of generality that &1�
x1�x2� } } } �xk�1. Further, define quasipolynomials q~ s and qs , 1�s�
k, as

q~ 1(z)=q(z) e&a1z,

q1(z)=q~ (m1)
1 (z)= :

k

i=2

pi1(z) e(ai&a1) z;

q~ s(z)=qs&1(z) e&(as&as&1) z,

qs(z)=q~ (ms)
s (z)= :

k

i=s+1

pis(z) e(ai&as) z (s>1).

Here deg pis�deg pi ; q~ k is a polynomial of degree �deg pk and qk=0.
Hereafter Dt denotes the disk of radius t centered at 0. In the next step

we estimate maxz # D1&i�2k |qi (z)|. Let A :=maxz # D |q(z)|. Then

|q~ 1(z)|=|q(z) e&a1z|�Ae |a1| (z # D).

To estimate maxz # D1&1�2k |q1(z)| we apply Cauchy's inequalities for the
derivatives of a holomorphic function

max
z # D1&1�2k

|q1(z)|� max
z # D1&1�2k {

1
2? } ||z| =1

(m1)! q~ 1( y)
( y&z)m1+1 dy }=

�(2k)m1+1 (m1)! Ae |a1|(:=A1).

From these inequalities we also have

|q~ (l )
1 (0)|�A1 , 0�l�m1 .

Continuing by induction we obtain for 1<s�k

max
z # D1&(s&1)�2k

|q~ s(z)|�As&1e |as&as&1|

max
z # D1&s�2k

|qs(z)|�(2k)ms+1 (ms)! As&1 e |as&as&1|(:=As) (2.1)

|q~ (l )
s (0)|�As , 0�l�ms .
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Finally,

max
z # D1�2

|q~ k(z)|�A(2k)m&mk&1 } e |a1| +� k&1
i=1 |ai+1&ai | } `

k&1

i=1

(mi)! (:=A$k).

Note also that

A<A1< } } } <Ak&1�A$k .

Since q~ k is a polynomial of degree �mk&1, the Bernstein inequality for
polynomials implies that

max
z # Dt

|q~ k(z)|�(2R)mk&1 A$k , R�1�2.

From the last estimate it follows that for x # [0, R]

|qk&1(x)|�C1Rmk&1eR(xk&xk&1) (2.2)

with C1=2mk&1A$k . Integrating this inequality and using (2.1) we get (for
R>1 and x # [0, R])

|q~ (mk&1&1)
k&1 (x)|�|q~ (mk&1&1)

k&1 (0)|+|
x

0
|qk&1(t)| dt�2C1RmkeR(xk&xk&1). (2.3)

Repeating this procedure after mk&1&1 steps we obtain

|q~ k&1(x)|�(mk&1+1) C1Rmk+mk&1&1eR(xk&xk&1) (x # [0, R]).

Now we can apply the very same arguments to q~ k&1 to estimate q~ k&2 etc.
Finally, we have

max
x # [0, R]

|q(x)|�\1+ :
k&1

i=1

m i+ C1 Rm&1 e |ak| R�CRm&1e=R max
z # D

|q(z)| (2.4)

with

C=m(2k)m } el(q) } `
k&1

i=1

(mi)!<2(km)m el(q). (2.5)

Here l(q) :=|a1|+�k&1
i=1 |ai+1&ai |�2k&1 for generic a1 , ..., ak and

l(q)�3 if these points belong to a straight line. Finally, note that
>k

i=1 (mi)! for the restriction q| l is less then or equal to the similar expres-
sion for the quasipolynomial q itself.

Thus we have proved the proposition under the assumption =(q)�1. Let
us consider the case =(q)>1.
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For the quasipolynomial q let us define

q1(z) :=q(z�=(q)).

Clearly q1 is a quasipolynomial with the same characteristics as q and with
=(q1)=1. Thus according to the inequality of the theorem for =(q)�1 we
have

max
Bc (0, R)

|q|= max
Bc (0, =(q) R)

|q1|�C(=(q) R)m&1 e=(q) R max
Bc (0, 1)

|q1|

�C(=(q) R)m&1 e=(q) R max
Bc ((0, 1)

|q|.

The proof of Theorem 1.2 is complete. K

3. PROOF OF THEOREMS 1.5 AND 1.7 AND COROLLARY 1.8

Proof of Theorem 1.5. In the proof we use the result proved in Levin's
book [L, p. 21]. A slightly different proof can be done by the method
presented in [Br1].

Lemma 3.1. Let f (z) be a holomorphic function on D2eR , f (0)=1 and '
be a positive number �3e

2 . Then there is a set of disks [Di] with �i ri�4'R,
where ri is radius of Di such that

log | f (z)|>&H(') log max
D2eR

| f |

for any z # DR "(�i Di). Here H(')=2+log 3e
2' .

Let q be a quasipolynomial of degree m and I be a real interval in
Bc(z, r). Let lc be a complex straight line containing I. Without loss of
generality we may consider I as an interval [&a, a] on the real axis x1

such that a<r. Then lc coincides with C. We set q1 :=q| lc . Let |/I be a
measurable subset. Consider two disks Da /D2ea /C. Let w # Da be such
that

max
Da

|q1|= |q1(w)|.

Further consider disks D(w, 2a)/D(w, 4ea)/lc centered at w with radii 2a
and 4ea, respectively. Observe that D(w, 4ea)/D(2e+1�2) 2a . We apply
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Lemma 3.1 to D(w, 2a)/D(w, 4ea) and f =q1 �|q1(w)| with '=|||�20a.
Then we obtain

log | f (z)|>&H(') log max
D(w, 4ea)

| f |

for any z # D(w, 2a)"(�i Di) where [D i] is a set of disks with �i ri�2|||�5,
and ri is radius of Di . Here H(')=2+log 30ea

||| . Note that �i Di can not
cover | because of the choice of '. Therefore there is a point x0 # | for
which the last inequality holds, that is,

&\2+log
30ea
||| + log max

D(w, 4ea)

|q1|
|q1(w)|

�log
|q1(x0)|
|q1(w)|

�log max
|

|q1|
|q1(w)|

. (3.1)

Applying now inequality of Theorem 1.2 to q1 and Da /D(2e+1�2) 2a and
taking into account that

max
D(w, 4ea)

|q1|� max
D(2e+1�2) 2a

|q1| and max
I

|q1|�max
Da

|q1|

we obtain from (3.1)

&\2+log
15e |I |

||| + log[C(max[1, =(q1)](4e+1))m&1 e=(q1)(2e+1�2) |I |]

�log
max| |q1|
maxI |q1|

.

Taking the exponent in both sides of this inequality and using the inequ-
alities =(q1)�=(q), |I |�2r we get

max
I

|q|�\c1 |I |
||| +

l

max
|

|q|

with l=log C+(m&1) log(c2 max[1, =(q)])+c3=(q) r; c1=15e3, c2=
log(4e+1) and c3=4e+1.

The proof of Theorem 1.5 is complete. K

Proof of Theorem 1.7. Let V/Rn be a convex body and |/V be a
measurable subset. Choose a point x # V such that |q(x)|=maxV |q|.
(Without loss of generality we may assume that x is an interior point of V;
for otherwise, we apply the arguments below to an interior point x= , =>0,
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such that |q(x=)|>maxV |q|&= and then take the limit as = � 0.) Accord-
ing to Lemma 3 of [BG] there is a ray with origin at x such that

mes1(l & V)
mes1(l & |)

�
n |V|
|||

. (3.2)

We set I :=l & V, |1 :=l & | and apply the inequalities of Theorem 1.5 and
(3.2) to this pair. Then we get

sup
V

|q|=sup
I

|q|�\c1 |I |
||1| +

:

sup
|1

|q|�\c1n |V|
||| +

:

sup
|

|q|.

Here :=log C+(m&1) log(c2 max[1, =(q)])+(c3 �2) =(q) diam(V) and c1 ,
c2 , c3 , C as in Theorem 1.5. K

Proof of Corollary 1.8. Let V be a convex body and q be a quasi-
polynomial of degree m. For the distribution function Dq(t) :=mes[x # V;
|q(x)|�t] the inequality of Theorem 1.7 acquires the form

Dq(t)�c1 n |V| \ t
&q&V+

1�:

.

Let q
*

(t)=inf[s : Dq(s)�t]. Then from the above inequality for Dq we
obtain

|
V

log
&q&V

|q(x)|
dx=|

|V|

0
log

&q&V

q
*

(t)
dt�|

|V|

0
log \c1 n |V|

s +
:

ds=: log(c1 en).

Then the required result trivially follows from this inequality. K

4. PROOF OF THEOREM 1.9 AND COROLLARIES 1.10 AND 1.11

Proof of Theorem 1.9. Our main tool is a remarkable result of Kannan,
Lova� sz and Simonovits ([KLS, Cor. 2.21]) which reduces the estimation
of a multidimensional integral to corresponding one-dimensional ones.
Using this we establish the following basic inequality which gives
Theorem 1.9 as a simple consequence.

Proposition 4.1. Let q, V, r>1, +h and : be as in Theorem 1.9. Then

\ 1
|V| |V

|q| m d+h +
n

\ 1
|V| |V

|q|&p d+h+
r

�(2e)n+r c (mn+ pr) :
1

1(:+1)n

(1& p:)r
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provided m, n, p, r>0 satisfy

mn= pr, p<
1
:

.

Here, as usual, 1(x) :=��
0 tx&1e&t dt and c1<15e3 is the constant of

Theorem 1.5.

First, we formulate several results used in the proof of the proposition.
We introduce the following definition (see [KLS]). By an exponential
needle we mean a segment I=[x, y] in Rn, together with a real constant
#. If (E, #) is an exponential needle and f is an integrable function defined
on I, then we set

|
E

f=|
| y&x|

0
f (x+tu) e#t dt,

where u=(1�| y&x| )( y&x).

Theorem 4.2 [KLS]. Let f1 , f2 , f3 , f4 be four nonnegative continuous
functions defined on Rn, and a, b>0. Then the following are equivalent:

(a) For every log-concave function F defined on Rn with compact
support,

\|Rn
F(t) f1(t) dt+

a

\|Rn
F(t) f2(t) dt+

b

�\|R n
F(t) f3(t) dt+

a

\|R n
F(t) f4(t) dt+

b

.

(b) For every exponential needle E

\|E
f1 +

a

\|E
f2 +

b

�\|E
f3 +

a

\|E
f4 +

b

.

Remark 4.3. The above theorem is also valid for nonnegative f1 , f2 , f3 ,
f4 such that f1 , f2 are the limits of monotone increasing sequences of con-
tinuous functions defined on Rn and f3 , f4 are the limits of monotone
decreasing sequences of continuous functions defined on Rn (see Remark 2.3
in [KLS]). In particular, we can apply this theorem in the case of K a
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closed convex body, f1 , f2 nonnegative continuous functions defined on K
which are 0 outside K and f3 , f4 nonnegative functions which are constant
on K and 0 outside.

We also use the next distributional inequality that follows directly from
the inequality of Theorem 1.5.

Let V/As/Cn be an s-dimensional convex body, I/V be a real seg-
ment and q be a quasipolynomial. For the distribution function DqI (t) :=
|[x # I : |q(x)|�t]| (with respect to the usual Lebesgue measure on I ) let
us define (qI)*

(t)=inf[ y : DqI ( y)�t]. Then

(qI)*
(t)�\ t

c1 |I |+
:

sup
V

|q| (4.1)

with :=log C+(m&1) log(c2 max[1, =(q)])+(c3�2) =(q) diam(V), c1<15e3

(cf. Theorem 1.7).

Proof of Proposition 4.1. Let q be a quasipolynomial and I/V be a real
interval. Then the functions q= :=(|q|+=)| I , =>0, and q=, a, b(t)=q=(at+b),
t # I, a, b # R, also satisfy the inequality of Theorem 1.5. We must apply the
KLS theorem to functions q1 :=(|q|+=)m, q2 :=(|q|+=)&p (continuous on
V) and q3 :=2e } cm:

1 1(m:+1), q4 :=2e } c p:
1 �(1& p:) on V and 0 outside V

and then take the limit when = � 0. To avoid abuse of notation and because
our estimates below do not depend on = we may assume without loss of
generality that |q| itself has no zeros on V.

According to the KLS theorem and Remark 4.3 the proposition follows
from the inequality

\|E
|q|m+

n

\|E
|q|&p+

r

�(2e)n+r c(mn+ pr) :
1

1(m:+1)n

(1& p:)r \|E 1+
n+r

for an exponential needle E/V. Making an affine change of variables in the
above integrals we reduce the problem to the following inequality

\|
s

0
|q~ (x)|m e&x dx+

n

\|
s

0
|q~ (x)|&p e&x dx+

r

�(2e)n+r c(mn+ pr) :
1

1(m:+1)n

(1& p:)r (1&e&s)n+r.

Here q~ is a function obtained from q by this change of variables. As we
already mentioned q~ satisfies inequality of Theorem 1.5 with : instead of l.
Below we denote &q~ & :=supI |q~ |.
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First, let 0�s�1. Then

\|
s

0
|q~ (x)|m e&x dx+

n

\|
s

0
|q~ (x)|&p e&x dx+

r

�\|
s

0 \
|q~ (x)|

&q~ &[0, s]+
m

dx+
n

\|
s

0 \
&q~ &[0, s]

|q~ (x)| +
p

dx+
r

�sn \|
s

0 \
&q~ &[0, s]

q~
*

(t) +
p

dt+
r

�sn \s |
1

0 \
c1

t +
p:

dt+
r

�c pr:
1 sn+r \ 1

1& p:+
r

�c pr:
1 (2(1&e&s))n+r \ 1

1& p:+
r

.

Here we applied inequality (4.1) to the lower distribution function q~
*

of q~ and
used the inequality 1&e&s>s�2 for 0<s�1. Observe that the obtained con-
stant is even less than the required one.

Assume now that s>1. We estimate each of the two factors of the given
expression. Without loss of generality we may assume that s is an integer.
Then

|
s

0
|q~ (x)|m e&x dx= :

s&1

i=0
|

i+1

i
|q~ (x)|m e&x dx

� :
s&1

i=0
\|

i+1

i
|q~ (x)|m dx+ e&i

� :
s&1

i=0
\|

i+1

i \ |q~ (x)|
&q~ &[i, i+1]

&q~ &[i, i+1] +
m

dx+ e&i

� :
s&1

i=0

&q~ &m
[0, i+1] e&i

� :
�

i=0

(c1(i+1))m: e&i &q~ &m
[0, 1]

�cm:
1 e |

�

0
xm:e&x dx &q~ &m

[0, 1]

=cm:
1 e1(m:+1) &q~ &m

[0, 1] .
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We used here inequality of Theorem 1.5 to estimate sup[0, i+1] |q~ | by
sup[0, 1] |q~ |. Similarly,

|
s

0
|q~ (x)|&p e&x dx� :

s&1

i=0
\|

i+1

i
|q~ (x)|&p dx+ e&i

� :
s&1

i=0 \|
i+1

0 \&q~ &[0, i+1]

|q~ (x)| +
p 1

&q~ & p
[0, i+1]

dx+ e&i

� :
s&1

i=0
\|

i+1

0 \&q~ &[0, i+1]

q~
*

(t) +
p 1

&q~ & p
[0, 1]

dt+ e&i

�\ :
s&1

0
|

i+1

0 \c1(i+1)
t +

p: 1
&q~ & p

[0, 1]

dt+ e&i

� :
s&1

i=0

c p:
1 (i+1)
1& p:

1
&q~ & p

[0, 1]

e&i�
ec p:

1

1& p:
1

&q~ & p
[0, 1]

.

Using that pr=mn and 1&e&s�1�2 for s�1 we get from these inequalities

\|
s

0
|q~ (x)|m e&x dx+

n

\|
s

0
|q~ (x)|&p e&x dx+

r

�c(mn+ pr) :
1 } (2e)n+r 1(m:+1)n

(1& p:)r (1&e&s)n+r.

This completes the proof of the proposition. K

We proceed to the proof of Theorem 1.9.

(1) We apply Proposition 4.1 to q with n=1, p=1�(2:), r=2m and
with m�: instead of m. Here m is a positive integer. Below, denote g :=|q|1�:.
Assume without loss of generality that gV=1 and set Ew :=
[x # V : g(x)>w], |Ew | :=+h(Ew). Then from Proposition 4.1 we obtain

wm |Ew | \|V
g&1�2 d+h+

2m

�\|V
gm d+h+\|V

g&1�2 d+h+
2m

�c2m
1 (2e)2m+1 22m(m!)
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which is equivalent to (because c1<15e3)

wm |Ew |�
c2m

1 24m+1e2m+1(m!)
(�V g&1�2 d+h)2m

�212m+1e8m+1(m!) exp \&2m log \|V
g&1�2 d+h++

�212m+1e8m+1(m!)(gV)m=212m+1e8m+1(m!)�e20m(m!). (4.2)

We used here Jensen's inequality

|
V

g&1�2 d+h�exp \&1
2 |

V
log g d+h+ .

Since |V|=1, we also have

|Ew |�1.

Dividing both sides of (4.2) by e21m(m!) and summing over m from 0 to �
we get

exp(w�e21) |Ew |�2

or

|Ew |�2 exp(&w�e21).

Since g :=|q|1�:, the required inequality follows from here.
This proves part (1).

(2) Recall that CV(q) := 1
|V| �V log |q| d+h . We will estimate the measure

|F# | :=+h(F#) of the set F# :=[x # V : |log |q|&CV (q)|�#], #�1. We apply
Proposition 4.1 to q with m= p=(1&1�#)�:, n=q=1. Then we have

e(2#(1&1�#)�:) |F# |2�\|V
e((1&1�#)�:)(log |q|&CV(q)) d+h+

_\|V
e(&(1&1�#)�:)(log |q|&CV(q)) d+h+

�c2(1&1�#)
1 (2e)2 1(2&1�#)

1&(1&1�#)
�29e8#.

Hence

|F# |�25e4+1�:e&#�:#1�2. (4.3)
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This, in particular, gives an estimate of +h[x # V : log |q|&CV (q)�&#]
which, in turn, gives the required result

+h[x # V : |q(x)|�tqV]�25e4(et)1�: (log t)1�2, t�e&1,

with t=e&#.
The proof of Theorem 1.9 is complete. K

Proofs of corollaries. Corollary 1.10 follows directly by integration of
inequality (1) of Theorem 1.9 and Corollary 1.11 is a simple consequence of
inequality (4.3). K
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